171 research outputs found

    Lee Silverman voice treatment (LSVT) mitigates voice difficulties in mild Parkinson's disease

    Get PDF
    Background: Parkinson's disease (PD) is a progressive neurological disorder and many PD patients experience some type of voice and speech disorders during the course of illness. In this study, the aim was to investigate the effect of Lee Silverman voice treatment (LSVT) on improving voice difficulties in patients with mild PD using voice handicap index (VHI). Methods: This interventional study was conducted on 23 PD patients who were randomly divided into 2 groups: a treatment group (PD-T) (n=13) and a no-treatment group (PD-NT) (n=10). Neurologically healthy control (NNC) group consisted of 13 healthy participants who did not suffer from voice and speech problems and were matched with PD group by age (50-65 years), sex, and education. VHI questionnaire was completed a day before the start of LSVT and a day after the treatment fulfillment for the PD-T group; the same time spots were applied for the PD-NT and NNC groups. Statistical analyses were performed using SPSS Statistics 22.0 and significance level was set at 0.05. The multivariate analysis of variance and repeated measure analysis of variance were used for data analysis. Results: PD groups showed a significant weakness in VHI scores before treatment compared to NNC group (p < 0.001). The mean of VHI scores for PD-T, PD-NT, and NNC groups before treatment was 44.31±11.23, 43.54±6.10, and 8.15±4.27, respectively. LSVT was successful in improving VHI scores in PD-T group (17.23±5.35, p < 0.001). However, no improvement was observed in PD-NT group (44.00±5.88). Conclusion: Improvement in VHI score could be the result of ameliorated self-monitoring and self-regulation created by LSVT. © Iran University of Medical Sciences

    Working memory training in post-stroke aphasia: Near and far transfer effects

    Get PDF
    Purpose: Individuals with aphasia (IWA) show various impairments in speech, language, and cognitive functions. Working memory (WM), a cognitive system that functions to hold and manipulate information in support of complex, goal-directed behaviors, is one of the impaired cognitive domains in aphasia. The present study intended to examine the effects of a WM training program on both memory and language performance in IWA. Method: This quasi-experimental study with an active control group was performed on 25 people with mild or moderate Broca's aphasia aged 29�61 years resulting from left hemisphere damage following ischemic stroke. Participants were assigned into two groups, including a training group (n = 13) and a control group (n = 12). The treatment and control groups received WM training and routine speech therapy, respectively. Two separate lists of WM tests, including one list for both pre-training assessment and training program and a second list for the post-training assessment, were used in this study. Results: The treatment group showed significant improvements in both trained and non-trained WM tasks (near transfer effect) and language performance (far transfer effect) compared to the control group. Conclusion: Given the good generalizability of the WM training program on both WM and language performance, WM training is suggested as part of the rehabilitation program in aphasia. © 2020 Elsevier Inc

    Roles of AP-2 in clathrin-mediated endocytosis.

    Get PDF
    The notion that AP-2 clathrin adaptor is an essential component of an endocytic clathrin coat appears to conflict with recent observations that substantial AP-2 depletion, using RNA interference with synthesis of AP-2 subunits, fails to block uptake of certain ligands known to internalize through a clathrin-based pathway

    Cisternal Organization of the Endoplasmic Reticulum during Mitosis

    Get PDF
    The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules

    Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Get PDF
    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions

    PMAP: databases for analyzing proteolytic events and pathways

    Get PDF
    The Proteolysis MAP (PMAP, http://www.proteolysis.org) is a user-friendly website intended to aid the scientific community in reasoning about proteolytic networks and pathways. PMAP is comprised of five databases, linked together in one environment. The foundation databases, ProteaseDB and SubstrateDB, are driven by an automated annotation pipeline that generates dynamic ‘Molecule Pages’, rich in molecular information. PMAP also contains two community annotated databases focused on function; CutDB has information on more than 5000 proteolytic events, and ProfileDB is dedicated to information of the substrate recognition specificity of proteases. Together, the content within these four databases will ultimately feed PathwayDB, which will be comprised of known pathways whose function can be dynamically modeled in a rule-based manner, and hypothetical pathways suggested by semi-automated culling of the literature. A Protease Toolkit is also available for the analysis of proteases and proteolysis. Here, we describe how the databases of PMAP can be used to foster understanding of proteolytic pathways, and equally as significant, to reason about proteolysis

    miR451 and AMPK Mutual Antagonism in Glioma Cell Migration and Proliferation: A Mathematical Model

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and the most aggressive type of brain cancer; the median survival time from the time of diagnosis is approximately one year. GBM is characterized by the hallmarks of rapid proliferation and aggressive invasion. miR-451 is known to play a key role in glioblastoma by modulating the balance of active proliferation and invasion in response to metabolic stress in the microenvironment. The present paper develops a mathematical model of GBM evolution which focuses on the relative balance of growth and invasion. In the present work we represent the miR-451/AMPK pathway by a simple model and show how the effects of glucose on cells need to be “refined” by taking into account the recent history of glucose variations. The simulations show how variations in glucose significantly affect the level of miR-451 and, in turn, cell migration. The model predicts that oscillations in the levels of glucose increase the growth of the primary tumor. The model also suggests that drugs which upregulate miR-451, or block other components of the CAB39/AMPK pathway, will slow down glioma cell migration. The model provides an explanation for the growth-invasion cycling patterns of glioma cells in response to high/low glucose uptake in microenvironment in vitro, and suggests new targets for drugs, associated with miR-451 upregulation

    Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion

    Get PDF
    Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion

    Vesicular Stomatitis Virus Enters Cells through Vesicles Incompletely Coated with Clathrin That Depend upon Actin for Internalization

    Get PDF
    Many viruses that enter cells by clathrin-dependent endocytosis are significantly larger than the dimensions of a typical clathrin-coated vesicle. The mechanisms by which viruses co-opt the clathrin machinery for efficient internalization remain uncertain. Here we examined how clathrin-coated vesicles accommodate vesicular stomatitis virus (VSV) during its entry into cells. Using high-resolution imaging of the internalization of single viral particles into cells expressing fluorescent clathrin and adaptor molecules, we show that VSV enters cells through partially clathrin-coated vesicles. We found that on average, virus-containing vesicles contain more clathrin and clathrin adaptor molecules than conventional vesicles, but this increase is insufficient to permit full coating of the vesicle. We further show that virus-containing vesicles depend upon the actin machinery for their internalization. Specifically, we found that components of the actin machinery are recruited to virus-containing vesicles, and chemical inhibition of actin polymerization trapped viral particles in vesicles at the plasma membrane. By analysis of multiple independent virus internalization events, we show that VSV induces the nucleation of clathrin for its uptake, rather than depending upon random capture by formation of a clathrin-coated pit. This work provides new mechanistic insights into the process of virus internalization as well as uptake of unconventional cargo by the clathrin-dependent endocytic machinery
    corecore